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Abstract

The Sage development method and associated tool
set support an incremental, iterative, model-driven
process to build and maintain high assurance, reactive
multi-agent systems. A set of interconnected models
provide documentation supporting high assurance cer-
tification efforts, maintenance, and reuse. Tools can
analyze the models for important classes of errors, and
generate complete multi-agent systems.

1. Introduction

We are concerned with developing high assurance,
reactive multi-agent systems (MAS). Agents compris-
ing such systems monitor their environment via hard-
ware and software sensors, and react to it via hardware
and software actuators. An agent may maintain state
and send values to and receive values from other
agents. Individual agents, or the entire MAS, may
exhibit complex modal behavior.

For high assurance systems, just delivering a
working system is insufficient. The customer must
have confidence that it has certain critical properties
(e.g, security, safety). Some of that confidence is
derived from documentation that is typically a byprod-
uct of the development process, e.g., design specifica-
tions, test plans. Assurance arguments use as evidence
the documentation and code, and the results of apply-
ing automated analysis tools (e.g., theorem provers,
model checkers) to the documentation and code.

Agile development [2][23] is a process focused on
frequent delivery of working software and on respon-
siveness to customer needs. Frequent delivery of work-
ing software helps distinguish progress from motion,
which can be difficult to distinguish in a document-
centered process that produces working code only near
the end of development. Agile development is code-
centric; it largely forgoes developing and delivering
work products other than code, e.g., requirements and
design models.

Model-driven development is a software develop-
ment approach that is agnostic with respect to process
and methods. Its “defining characteristic is that soft-
ware development’s primary focus and products are
models rather than computer programs.” [25].

As with software development in general, high
assurance software development suffers from the sort
of problems that agile development’s ability to distin-
guish progress and motion can ameliorate. High assur-
ance projects go over budget and schedule, fail to
deliver promised functionality on time, or fail to
deliver at all. Being able to discern early that while the
project is generating lots of documents, it is making
insufficient progress toward delivering a system can
make it possible to fix project problems before it’s too
late. However, applying agile development to high
assurance software is problematic: a key principle
eschews exactly the documentation that assurance
arguments require as evidence.

Sage marries agile development to model-driven
development. The Sage meta-model, developed to
facilitate model-driven development, provides a tem-
plate for recording decisions developers need to make,
which supports faking a rational development process
[20]. Further, the meta-model, by eliminating redun-
dant capture of developers' decisions, supports agility.
Executable code, generated from developers' descrip-
tions of software behavior, can be developed, deliv-
ered, and updated quickly. Organizing the behavior
into, e.g., design elements supporting intellectual con-
trol required of assurance arguments, can be done con-
currently or subsequently. Developers practice agile
development, albeit with models rather than a tradi-
tional programming language, while producing and
maintaining documentation required by assurance
arguments. Generating executable code from the mod-
els gives confidence that the models are consistent with
the executable code. Automated analyses of such mod-
els can give confidence that analysis results are relevant
to the executable code.
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This paper is about the Sage development method
and its associated tool set, which support an incremen-
tal, iterative, model-driven process to build and main-
tain high assurance multi-agent systems. A Sage
application model comprises a set of interconnected
models that provide documentation supporting high
assurance certification efforts, that tools can analyze
for important classes of errors, that support mainte-
nance and reuse of the models, and from which tools
can generate a complete MAS.

2. The Sage Models

A Sage application model, an instantiation of the
Sage meta-model [3], records developers’ decisions in
four distinct models. The environmental model records
the boundary of the system with its environment. The
behavioral model records the behavior (i.e., functional-
ity, business logic) of the system. The design model
records the decomposition of the behavior into pieces
supporting intellectual control and encapsulation. The
run-time model records the decomposition of the
behavior into agents supporting performance and qual-
ity of service requirements.

In various combinations, the four models share
subsets of a set of mathematical variables called
attributes. Some of the attributes denote quantities and
qualities in the environment (e.g., the position of a
switch, the brightness of an office), some denote physi-
cal inputs and outputs, others represent quantities and
qualities chosen for the convenience of modeling.
Mathematical functions that specify the values of
selected attributes model the behavior of the system
and its components. Automation can reflect changes to
an attribute declaration or function in one model to all
models that share the attribute. Changes to other
aspects of a model, which have to do with concerns
unique to that model, do not affect other models.

Sage adopts a small subset of UML—class dia-
grams—to provide views of three of the four Sage
models. Associated with each class representing a
design element in a Sage model may be a number of
attributes. In a Sage design or run-time model the
attributes are organized into named compartments.
Two of the compartments, provides output and pro-
vides input, provide an abstract interface [7] for the
design element the class represents. The provides out-
put compartment lists attributes whose values the
design element makes available to other design ele-
ments in the model. The provides input compartment
lists attributes whose values other design elements may
set. Two more compartments, requires input and
requires output, describe what the design element

needs to satisfy its abstract interface. The requires
input compartment lists attributes whose values the
design element requires. The design element is respon-
sible for calculating the values of attributes listed in the
requires output compartment. It depends upon others to
set them. A fifth compartment, local, lists attributes
whose values are computed and used only by the
design element containing the compartment.

Figure 1 illustrates a UML class representing an
agent taken from a Sage run-time model. The class
FMControlPanel has four named compartments, pro-
vides output, requires input, requires output, and local.
The third compartment, requires output, contains the
attributes oMDMalfunction and oOLSMalfunction.
FMControlPanel is responsible for calculating the val-
ues of these attributes.

2.1. The Environmental Model

The environmental model provides an application-
specific ontology for the MAS, including descriptions
of what the MAS can sense, control, or affect. The
model records the system boundary by identifying
objects in the environment of the system (which may
include the system itself and components of the sys-
tem) and attributes of the objects that may be relevant
to the system, referred to as environmental attributes.
The declaration of an attribute in the model includes its
type, which characterizes the values it can assume, and
a description of how to interpret its value [15].

UML classes represent the objects in the system
environment. The attributes associated with each object
are listed in the corresponding class. Standard UML
class notation may record relationships among the
classes of the environmental model, the relative cardi-
nality of the objects abstracted by the classes of the
environmental model, and the cardinality of the
attributes of each object.

FMControlPanel

rovides output

mEMOverride

requires input
mMovementFailure
mOLSenseFailure
iFMOverride
iT3
iTime

requires output
oMDMalfunction
0OLSMalfunction

local
¢MDMalfunction
cOLSMalfunction
mEMOverride
mT3

mTime

vTime

vT3

vEMOverride
wOLSMallunction
wMDMalfunction

FIGURE 1. Class with named compartments
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2.2. The Behavioral Model

The behavioral model describes the behavior (i.e.,
the functionality or business logic) of the MAS as a
whole. The model includes declarations of attributes,
types, and constants and functions which specify the
values of attributes and the effects of setting their val-
ues. References [13] and [14] provide details on how to
represent such functions and on their formal semantics.

Sage models behavior of an MAS in terms of
selected environmental attributes. Sage records which
environmental attributes the system is to control,
manipulate, or affect. These attributes are referred to as
controlled attributes. The values the controlled
attributes assume over time is the system behavior.
Sage records which environmental attributes determine
the values of the controlled attributes. These attributes
are referred to as monitored attributes.

The behavioral model includes declarations of
additional attributes, called ferms, assigning them
names and types that characterize the values that they
can assume. For a mode-dependent system, one whose
behavior varies significantly depending upon the sys-
tem's mode of operation (e.g., initialization, normal
operation, alarm), one or more attributes called mode
classes may capture the modes. The declaration of each
mode class gives it a name and a type, which identifies
the names of the modes in the mode class.

The domain of each function specifying the value
of a controlled attribute may comprise monitored
attributes, controlled attributes, mode classes, and
terms (denoted M, C, Z, and T, respectively). Addi-
tional mathematical functions specify the values of the
mode classes and the terms. The domain of each of
these functions may comprise monitored attributes,
controlled attributes, mode classes, and terms.

The behavioral model includes declarations of
additional attributes called virtual inputs, virtual out-
puts, physical inputs, and physical outputs (denoted V,
W, I, and O, respectively). The declaration of each of
these additional attributes identifies its name and type.
Physical inputs and outputs denote interfaces to physi-
cal devices, other systems, and other software. Virtual
inputs and outputs provide stable virtual devices that
abstract from aspects of the physical devices, other sys-
tems, and other software that is likely to change. Func-
tions specify how to calculate the values of the
monitored attributes, virtual outputs, and physical out-
puts.

2.3. The Design Model

The design model records a decomposition of the
behavioral model into design classes—design elements
responsible for distinct concerns. This decomposition
of behavior is independent of its run-time organization.
References [15][22][7] provide rationale and more
detail for this decomposition into information hiding
modules, which we represent with UML classes and
aggregation. (The designer may choose other decom-
position criteria.) As in [15], the design model is an
aggregation of Function Driver, Mode Determination,
System Value, and Device Interface classes. Any or all
of the classes may be further decomposed into sub-
classes. The modules that [15] describes as “left out” —
Extended Computer and Software Decision—Sage
considers to be a responsibility of the middleware.

Designing a design class is recorded by assigning
attributes to the five named compartments. Assigning
attributes to the provides output, requires output, and
local compartments of the design classes records the
design model’s decomposition of the behavioral model.
Implicit in assigning an attribute to one of these com-
partments is the assigning of the corresponding value
function to the design class.

Function Driver classes determine the values of
the controlled attributes, which are the behavior of the
MAS. Each controlled attribute is listed in the requires
output compartment of a function driver class, which is
responsible for calculating its value. Attributes required
by the functions are listed in the local or requires input
compartment. Each of the latter attributes must appear
in the provides output compartment of some other class
which calculates its value.

System Value classes are responsible for providing
the values of attributes shared by several classes, and
for setting the values of controlled attributes. The pro-
vides output compartment lists the shared attributes.
The appropriate functions calculate their values. The
provides input compartment lists the controlled
attributes. When a Function Driver class sets the value
of a controlled attribute, the system value class sets the
value of one or more virtual outputs. The requires input
compartment lists attributes whose values the various
functions require that aren’t calculated in the class. In
particular, this will include virtual inputs (V). The
requires output compartment lists the virtual outputs
(W) whose values the class calculates. The local com-
partment lists attributes used within the class that aren’t
used by other classes.

The provides output compartment of the Mode
Determination class lists mode class attributes (Z).
Attributes required to calculate Z are listed in the local
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compartment if they are only required by one of the
functions. Otherwise, they are listed in the requires
input compartment.

Each virtual input (V) appears in the provides out-
put compartment of one Device Interface class. The
appropriate functions calculate the values of the virtual
inputs in terms of the physical inputs (/). The requires
input compartment of each Device Interface class lists
physical inputs attributes (/). Providing the values of
the physical inputs may be a responsibility of the mid-
dleware. Each virtual output, W, appears in the provides
input compartment of a Device Interface class. The
requires output compartment of each Device Interface
class lists the appropriate members of O, the physical
outputs. When a System Value class sets the value of
virtual output, a Device Interface class sets the value of
one or more physical outputs. It may be the responsi-
bility of the middleware to send the values of the out-
put attributes to the appropriate physical devices.

2.4. The Run-Time Model

The run-time model records the decomposition of
the behavioral model —a network of functions, each of
which calculates the value of one attribute in terms of
the values of other attributes—into agents. Perfor-
mance and quality of service goals guide the develop-
ment of agents. Aside from agents that require special
resources (e.g., amounts of memory available only on
certain processors, communications with devices that
can only be accessed from particular processors), the
agents are location-transparent. The network of func-
tions is driven by the values of the physical input
attributes (/), which the underlying middleware may
provide.

As with design classes, designing an agent is
accomplished by assigning attributes to the five named
compartments of the UML class representing the agent.
Assigning attributes to the provides output, requires
output, and local compartments of the agents records
the run-time model’s decomposition of the behavioral
model. Implicit in assigning an attribute to one of these
compartments is the assigning of the corresponding
value function to the agent.

Two compartments —provides output and provides
input—record the provides interface of the agent, rep-
resenting the public interface it presents to others. It is
intuitive to think of the middleware establishing a
named write-only or read-only port for each attribute in
the two compartments. For an attribute in the provides
output compartment, the middleware establishes a
read-only port from which others can obtain the value
of the attribute. For an attribute in the provides input

compartment, the middleware establishes a write-only
port. The agent sets the attribute to a particular value
when the write-only port receives the value, which will
result in changes to the values of attributes whose func-
tions depend upon the former attribute.

Two compartments—requires input and requires
output—record the requires interface of the agent, rep-
resenting what the agent requires, e.g., of the provides
interfaces of other agents. Again, it is intuitive to think
of the middleware establishing a named, write-only or
read-only port for each attribute. The middleware
establishes a write-only port for each attribute assigned
to the requires input compartment. The middleware
may provide physical inputs to an agent whose requires
input compartment lists their names. Similarly, the
middleware establishes a read-only port for each
attribute assigned to the requires output compartment.
The middleware may provide to appropriate physical
devices values of physical outputs listed in an agent’s
requires output compartment.

3. Exercising the Sage Tool Set

The prototype Sage toolchain includes the Sage
prototype tool set, sol2sal compiler, Salsa property
checker [6], Sol compiler [4], and SINS middleware
[5] which provides an execution environment for Sage
agents. The prototype Sage tool set comprises a set of
plug-ins to the Eclipse IDE (integrated development
environment) and a set of external programs and
scripts. The Eclipse Modeling Framework (EMF) [8]
generated several of the plug-ins from the Sage meta-
model captured in Ecore, the modeling language of
EMF. The external programs and scripts, in addition to
generating graphical views of the models, generate
agents in the SOL language [4] from a Sage run-time
model.

Of the several applications which have exercised
the toolchain, the largest and most complex is the WCP
(weapons control panel) [14]. Operators of a deployed
US military platform use the WCP to monitor and pre-
pare weapons for launch. The contractor-developed
SRS, which was translated into a Sage behavioral
model, comprises 258 variables— 108 inputs, 90 out-
puts, and 60 internal variables—and 150 functions.

Sage was used to create an environmental model
of the WCP, consisting of five environmental classes,
one for each of three panels and two external mechani-
cal assemblies. Several run-time models of WCP were
developed using Sage (the Sage run-time model dictio-
nary supports an arbitrary number of run-time models
in an application model). One was a single, monolithic
agent. Another was a six-agent model, consisting of
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one agent for each of the five objects described by the
environmental model and an additional agent to com-
pute shared values. The sol2sal compiler translated a
SOL model of the WCP, which Sage generated, to the
language of Salsa. Salsa checked the consistency and
completeness [13] of the WCP, finding one non-deter-
ministic function. Sage has generated SOL for both
run-time models. After compilation by the SOL com-
piler both models have been deployed and executed on
SINS middleware, and demonstrated using scenarios
developed for a previous version of the WCP [14]. A
SINS policy enforcement agent for the WAP_SAFE_1
safety property [14] was developed in Sage. The policy
enforcement agent has been deployed, executed, and
shown to detect violations of the safety property on the
SINS middleware by both the single agent and six-
agent versions of the WCP.

4. Conclusions

We have described Sage, a method and its model-
driven tool set. We have built a prototype toolchain and
have used it to construct, automatically check for con-
sistency and completeness, and execute in the SINS
environment, several example multi-agent systems,
including the WCP, a subsystem on a deployed weapon
platform. Deploying WCP in several configurations
demonstrates reconfigurability.

That Sage agents can be automatically translated
and executed demonstrates that Sage can precisely
record behavior. However, Sage captures behavior at a
relatively high level in that a concern of all MAS meth-
ods we’ve examined, the contents of messages and pro-
tocols for exchange of messages among agents, is not a
concern of the Sage user when deploying agents in
SINS. This may reflect the application domain we’re
addressing—reactive systems.

The four Sage models provide at least some of the
documentation required of high assurance systems.
That executable software is produced from the models
suggests that agile development could produce high
assurance software and the associated required docu-
mentation. Further, the nature of the four models sup-
ports agile development. The models can be produced
in any order, allowing an agile development project to
react quickly to customer needs. Partial and inconsis-
tent models are executable facilitating rapid delivery to
the customer for use and evaluation.

5. Related Work

Amor and colleagues [1] note that there are a vari-
ety of agent-oriented methodologies focusing on analy-

sis and design, but “they do not completely resolve
how to achieve the model derivation from the system
design to a concrete implementation.” Amor and col-
leagues want to be able to transition from an arbitrary
MAS design methodology to an arbitrary agent plat-
form. They propose an approach based on the OMG’s
Model Driven Architecture (MDA), which will trans-
form a MAS design to Malaca, their “platform-neutral”
agent architecture, and then transform the Malaca-
based agents to the desired agent platform. They note
that such transformations can not be automated when
the design provides insufficient information. The Sage
effort demonstrates “how to achieve the model deriva-
tion from the system design to a concrete implementa-
tion” for a particular methodology and agent platform.
Transforming Sage models to a particular agent plat-
form demonstrates that Sage models contain sufficient
information for automation.

Cossentino and Potts [11] describe PASSI, an
elaborate MAS design methodology and process. Use-
case diagrams describe functional requirements for the
MAS as a whole. Packaging the use-cases identifies
agents and assigns functionality to them. The process
concludes with the design of the methods of the classes
implementing each agent “using classical approaches
(like flowcharts, state diagrams and so on) or event
semi-formal text descriptions” [11], code production,
and deployment configuration. They propose to move
beyond generation of class skeletons by introducing
standard pieces of code into method bodies based on
models from earlier phases. The Sage behavioral
model captures MAS functionality more precisely than
is possible with use-cases and, like PASSI, assigns it to
agents. Sage supports an agile, opportunistic process
that does not require redundant capturing of developer
decisions, in contrast to PASSI’s traditional waterfall
process.

Subsequently, Chella, Cossentino, and colleagues
developed Agile PASSI [9][10] because developers
found that development with PASSI was not as fast and
flexible as they would like. Agile PASSI focuses on
production of code rather than documentation, simpli-
fying the elaborate documentation required by PASSI.
In addition, an add-in for the MetaEdit+ tool generates
some documentation. Agile PASSI uses the Agent Fac-
tory tool to generate code skeletons from diagrams and
fill in method bodies with reused code. Manual coding
completes the implementation. Sage both provides
documentation required by high assurance (which
Agile PASSI eschews) and generates code. On the
examples we’ve worked, the recording of behavior in
the Sage behavioral model obviates the need for man-
ual coding.
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The UML-RSDS method and tools
[16][17][18][19] support model-driven development
for reactive systems by generating executable code
from specifications. The tools translate to the B lan-
guage a selected subset of UML, including behavior,
inheritance, and associations among classes captured
by constraints written in LOCA, an OCL-like based on
the B language. Static invariants are checked in the
resulting B. Tools can generate Java and C, and SMV
for temporal property checking. The approach does not
address decomposing software into agents or run-time
components, assigning behavior to them, nor describ-
ing the interfaces among them.
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